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Abstract
Aim: Geographic structure is a fundamental organising principle in ecological and 
Earth sciences, and our planet is conceptually divided into distinct geographic clus-
ters (e.g. ecoregions and biomes) demarcating unique diversity patterns. Given recent 
advances in technology and data availability, however, we ask whether geographically 
clustering diversity time- series should be the default framework to identify meaning-
ful patterns of diversity change.
Location: North America.
Taxon: Aves.
Methods: We first propose a framework that recognises patterns of diversity change 
based on similarities in the behaviour of diversity time- series, independent of their 
specific or relative spatial locations. Specifically, we applied an artificial neural net-
work approach, the self- organising map (SOM), to group time- series of over 0.9 million 
observations from the North American Breeding Birds Survey (BBS) data from 1973 
to 2016. We then test whether time- series identified as having similar behaviour are 
geographically structured.
Results: We find little evidence of strong geographic structure in patterns of diversity 
change for North American breeding birds. The majority of the recognised diversity 
time- series patterns tend to be indistinguishable from being independently distrib-
uted in space.
Main Conclusions: Our results suggest that geographic proximity may not correspond 
to shared temporal trends in diversity; assuming that geographic clustering is the basis 
for analysis may bias diversity trend estimation. We suggest that approaches that con-
sider variability independently of geographic structure can serve as a useful addition 
to existing organising rules of biodiversity time- series.

K E Y W O R D S
biodiversity change, functional diversity, nongeographic patterns, pattern recognition, 
phylogenetic diversity, spatial distribution, taxonomic diversity, temporal trends
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1  |  INTRODUC TION

Biodiversity describes the variety and heterogeneity of organisms 
at all levels of the hierarchy of life, from genes to species to eco-
systems (Gaston, 2000). It is changing at accelerating rates world-
wide due to human activity (Hull et al., 2015; Pecl et al., 2017). 
This implies an urgent need for appropriate assessments to ex-
plain the uneven distributions and patterns of biodiversity in order 
to decide conservation policies and gain maximal conservation 
benefits (Cardinale et al., 2012; Jetz et al., 2019). Most research 
attempting to describe and analyse the multiple dimensions of 
biodiversity has been from one of two perspectives. First, met-
rics and indicators are proliferating to capture different facets of, 
and values derived from, biodiversity (Pascual et al., 2021; Pereira 
et al., 2013; Skidmore et al., 2021). For example, taxonomic di-
versity has been assumed to function as a surrogate for different 
biodiversity facets (Rapacciuolo et al., 2019), mainly owing to the 
easy quantification and interpretation of species distribution data 
(Magurran, 2021). However, with the developing recognition that 
species are not equivalent (e.g. some perform unique functions 
and some clades carry more evolutionary history than others) 
(Vane- Wright et al., 1991; Vellend et al., 2011; Winter et al., 2013), 
measures of functional and phylogenetic diversity have recently 
been developed (Cadotte et al., 2015; Winter et al., 2013) to in-
corporate these facets of diversity. To be more specific, functional 
diversity is a measurement that incorporates different functions 
that species perform in an ecosystem and is usually character-
ised in terms of functional traits, that is morphological, physio-
logical, or behavioural characteristics (Petchey & Gaston, 2006). 
Phylogenetic diversity is a family of metrics derived from the phy-
logenetic distance among taxa and is sometimes controversially 
treated as a proxy for functional diversity, because functional 
traits are often phylogenetically conserved and measured imper-
fectly (Cadotte et al., 2017; Mazel et al., 2018).

Second, studies have been conducted to investigate the spa-
tial heterogeneity of biodiversity in different geographic clusters 
(e.g. ecoregions and biomes) within which organisms are assumed 
to have similar responses to environments (Dobrowski et al., 2021; 
Yu et al., 2019). For example, regional factors have often been used 
to infer environmental drivers for different populations in niche 
modelling and biodiversity mapping (Jetz et al., 2019), and diversity 
change at a single site has been employed to represent the change at 
a coarse scale (Antão et al., 2020; Daskalova et al., 2020). Whilst it is 
becoming widely recognised that species respond differently to the 
same environmental pressures and the relationship between them 
may vary at different scales (Jarzyna & Jetz, 2018; Owen et al., 2019; 
Tucker et al., 2018), macroecological studies like these continue to 
use predefined geographic clusters to carry out their analyses and 
recognise diversity patterns. This is likely owing to two reasons. 
First, it is a classic approach to observe and record biological pro-
cesses at a local scale and summarise the large- scale biological pat-
terns in a bottom- up way, where an assumption of similarity due to 
geographic proximity is easily adopted (Díaz & Malhi, 2022; Hughes, 

Orr, Yang, & Qiao, 2021; Tscharntke et al., 2012; Willig et al., 2003). 
Second, although there has been extensive data collection for biodi-
versity surveys, it remains challenging to sample a whole given area 
at large scales to capture all its diversity changes (Hughes, Orr, Ma, 
et al., 2021; Valdez et al., 2023), especially for long- term biological 
survey programmes that require substantial coordination and sup-
port (Bowler et al., 2022; Zhang et al., 2021). Thus, regional diversity 
patterns are calculated from samples within them, and geographic 
structure is used per se.

However, using geographic structure to define and analyse pat-
terns of diversity change may introduce biases for two reasons. First, 
the spatial distribution of diversity is highly heterogeneous (Gas-
ton, 2000), which means diversity in the same predefined geographic 
cluster can still vary greatly. Second, given the significance of human 
effects on nature, divergent diversity trends can be observed in sites 
that whilst geographically close experience these effects to varying 
degrees. This suggests events that can change diversity trends may 
not match simple geographic structures. Therefore, patterns of di-
versity change that are recognised by different geographical clusters 
may not effectively capture temporal diversity patterns. However, 
although such biases may exist, analyses that have estimated diver-
sity change have commonly used geographic structure to delineate 
large- scale patterns of diversity change, such as ecoregions (Harrison 
et al., 2018; Sano et al., 2019), bird conservation regions (Jarzyna & 
Jetz, 2018), country boundaries (Normander et al., 2012) and conti-
nents (Blowes et al., 2019; Kerr et al., 2015; Soroye et al., 2020). Little 
attention has been paid to whether patterns of diversity change can 
most effectively be recognised by geographically clustering.

Here, we ask: Should geographic structure be used as a default 
approach to recognise diversity patterns? To address this question, 
we propose a framework that tests whether times- series identified as 
having similar behaviour are geographically structured. We first rec-
ognise patterns of diversity change based on behaviours of diversity 
time- series neglecting their geographic locations. As such, diversity 
time- series are recognised as having the same pattern on the basis of 
similar trends in their variability rather than their geographic proximity. 
We then test the spatial dependence of time- series within the same 
pattern. Therefore, a geographic structure is found when diversity 
time- series that have a similar pattern of temporal change behaviour 
tend to be geographically clustered (Figure 1b– e). Otherwise, the time- 
series should be distributed independently (Figure 1f,g), signalling that 
geographical recognition of diversity patterns is likely biased. We illus-
trate this framework with the North American Breeding Bird Survey 
data both across North America and east of the Mississippi River. The 
data are collected annually over 5000 survey routes located across 
the continent of North America since 1966 (Pardieck et al., 2020). To 
incorporate multiple facets of diversity, we calculate taxonomic, func-
tional and phylogenetic diversity for all time- series. As a comparison, 
we complement this framework using analysis of a remote- sensing 
data set (MOD13C2 MODIS/Terra Vegetation Indices) (Didan, 2015) 
to produce a vegetation index (EVI) for cells across North America oc-
cupied by bird survey routes, which we expect a priori to demonstrate 
very strong spatial structuring.
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    |  15ZHANG et al.

2  |  MATERIAL S AND METHODS

2.1  |  Nongeographic framework

2.1.1  |  Pattern recognition

Diversity change time- series are inherently likely to show autocorre-
lation (Daskalova et al., 2021), and methods used to group diversity 
time- series should incorporate this. Here, we used self- organising 
maps (SOMs; T. Kohonen, 1997) to determine the patterns of the 
different diversity time- series. Self- organising map is based on an 
artificial neural network and uses an unsupervised learning method, 
well adapted to complex data analyses. As an informative and intui-
tive method in feature extraction, SOM has found wide application 
in a variety of disciplines for clustering, classification, dimensionality 

reduction and data visualisation (Liu et al., 2016). Some examples of 
the application of SOM in ecology are as follows: determining repre-
sentative species (Park et al., 2006); investigating fish assemblages 
(Penczak et al., 2012); and modelling temporal evolution of Pacific 
surface chlorophyll (Huang et al., 2017).

In an SOM algorithm, high- dimensional data sets are projected 
onto a low- dimensional space (typically two- dimensional), mean-
while preserving the similarity and the difference between the 
input data vectors. The process is organised by automatically de-
tecting relevant subgroups of similar input vectors and generating 
neurons (virtual vectors) that describe the coordinates of centres 
of the subgroups. Neurons in a network respond to a given sub-
group of similar input vectors and move closer to each other with 
the addition of new input vectors to it. Whilst a classic result from 
a SOM is a topology map (where the data sets to be classified 

F I G U R E  1  Conceptual framework to test spatial dependence. (a) Biodiversity facets from different sites are clustered onto a 2 × 1 SOM 
surface. (b and c) Recognised patterns of diversity change show strong geographic structures. (d and e) Recognised patterns of diversity 
change have medium geographic structures. (f and g) Represent no evidence for strong or medium geographic structures underlying the 
recognised patterns of diversity change. An average nearest neighbour (ANN) distance is used to measure the geographic proximity of 
different locations. ANN distance from the diversity time- series falling to the left of the histogram of ANN distances for randomly generated 
locations supports that geographic structure is important for pattern recognition (c and e), whilst ANN distance from real diversity time- 
series adhering to recognition of the weak geographic pattern will fall in the middle of the distribution (g). Points in (b), (d), and (f) with the 
same colour surrounded by a dotted circle represent that they have similar diversity change and are recognised into the same pattern. Solid 
lines in (c), (e) and (g) represent the ANN distance of diversity time- series, and dashed lines represent the average ANN distance for a set of 
random samples.
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16  |    ZHANG et al.

are mapped onto map nodes), the neurons that are neighbours 
on the topology map are expected to represent similar patterns; 
consequently, dissimilar patterns are expected to be distant from 
each other on the map. The training process iterates and tunes 
the network based on a preselected number of groups (hence, 
self- organising).

One of the most challenging steps in using SOM is to choose the 
number of groups. Topographic and quantisation errors (Teuvo Ko-
honen, 2012) have been proposed to help determine this for an SOM 
approach. The topographic error (TE) denotes the continuity of the 
topology mapping. Here, we calculated TE by the average distance 
between all pairs of most similar neurons of input vectors. The topo-
graphic error therefore can measure the topographic preservation 
and the accuracy of the mapping in topology.

where N is the number of neurons, and ‖‖ui − u‖‖ is the topographic dis-
tance between a given neuron and all other neurons.

The quantisation error (QE) represents the average distance be-
tween each input vector and its neuron.

where N is the number of the input diversity time- series, and 
‖‖xi − uc

‖‖ is the topographic distance between every input vector 
and its neuron. Usually, small values of TE and QE suggest a good 
performance of the SOM model. However, QE and TE gradually 
decrease as the number of neurons increases and thus can only 
help determine the optimal number of neurons at a local scale 
(Park et al., 2018). As the data structure is unknown before run-
ning a SOM model, the SOM surface is usually set to be simi-
lar to a square (i.e. equal length and width) to reduce bias (Park 
et al., 2018). We selected the number of neurons based on both 
TE and QE of relatively small values for different numbers of neu-
rons ranging from 4 to 25 with arbitrary intervals to reach square- 
shaped surface.

Self- organising map models can be applied directly to time- 
series data (Vesanto & Alhoniemi, 2000). We used the SOM model 
as a clustering and pattern recognition method to investigate tem-
poral diversity patterns. Specifically, the input diversity time- series 
were iterated by SOM to find the best matching neuron. Locations 
with similar diversity variability (i.e. diversity range and variation) 
were taken as one group. Only once the data were classified on 
their temporal diversity variability, the geographic distribution of 
the time- series identified and plotted. We generated nine groups 
of diversity time- series to explore their temporal change for the 
relatively smaller TE and QE of these numbers (Figures S1– S17), 
which can also efficiently extract patterns of diversity. To contrast 
diversity variability with that from other numbers of groups, we 
also calculated the SOM models of5 × 5, 5 × 4, 4 × 4 and 2 × 2 map 

size. We employed the ‘supersom’ function of the ‘kohonen’ pack-
age in R 4.0.1 (https://www.r- proje ct.org). All SOM models were 
performed with a hexagonal structure and Gaussian neighbour-
hood function. We used the hexagonal structure because nodes in 
a hexagonal structure have six neighbours and can display greater 
variance in neighbourhood size, compared to a rectangular struc-
ture where nodes have four neighbours. Taxonomic, functional 
and phylogenetic diversity were used simultaneously with the 
same weight in each SOM model.

2.1.2  |  Spatial dependence

We used a Monte Carlo test with the average nearest neighbour 
(ANN) distance to test spatial dependence (Clark & Evans, 1954) 
in membership of the groups of diversity time- series. ANN =

∑n

i
di

n
 , 

where di corresponds to the distance between feature i  and its near-
est neighbouring feature, and n is the number of features. The great 
circle distance on a WGS84 ellipsoid was used for all the distance 
calculations. Distance in raster data is calculated by the centres 
of each cell. For a given group of time- series that have the same 
pattern, we randomly selected an equal number of time- series to 
the number of time- series of that group from across all time- series 
analysed. Then, the ANN distance for locations of the randomly 
selected time- series was calculated. We did not generate random 
points across the space for randomisation, because the biological 
surveys are often not randomly located (e.g. avoiding overlap). That 
process might be explicit (i.e. the people who organise the surveys 
specify this), or it might not be (e.g. it just results from the decisions 
individuals make, but they make these in relation to other people's 
choices). The randomisation process was replicated 1000 times to 
generate a density histogram showing the distribution of ANN dis-
tances of the randomly distributed time- series. A pseudo p- value 
was calculated to show the probability of incorrectness if rejecting 
the geographic independence hypothesis that diversity time- series 
that have the same pattern are randomly distributed:

where Ngreater is the number of simulated ANN distances greater than 
the real ANN distance, and N is the number of replications. We did 
not remove locations that might lead to spatial pseudoreplications 
as here we aimed to test the geographic proximity of diversity time- 
series, which would be reflected by the results of the above analysis 
(e.g. p- value).

2.2  |  North American Breeding Bird Survey data

2.2.1  |  Data collection

We used the North American Breeding Bird Survey (BBS) data to 
investigate the biodiversity changes in different diversity facets 

TE =
1

n

(
N∑

i=1

min‖‖ui − u‖‖

)

QE =

(
N∑

i=1

‖‖xi − uc
‖‖

)

P =
min

(
Ngreater + 1,N + 1 − Ngreater

)

N + 1
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    |  17ZHANG et al.

(Pardieck et al., 2020). Breeding Bird Survey is a long- term avian 
monitoring programme that tracks the population dynamics of 
breeding birds and follows a strict survey protocol allowing for yearly 
comparisons. Breeding Bird Survey data are collected once per year 
in June over 5000 survey routes that are located across the conti-
nent of North America. Each survey route is approximately 40 km 
long, with 50 stops, and split into five segments. At each stop, the 
birds will be detected when they are seen or heard within a 400 m 
radius for 3 min. Generally, the trained observers record the stop ID, 
and the presence and abundance of each species encountered. The 
sampling for each whole route is conducted over approximately 5 h 
in the early morning.

Breeding Bird Survey data from the early years of the survey 
are limited due to insufficient sample size and spatial coverage, so 
we excluded those from 1966 to 1972. An SOM model treats data 
gaps as form of similarity between time- series (Park et al., 2018), 
which introduced bias if actual data in these gaps would have been 
different. To keep the integrity of temporal coverage and obtain 
enough samples, for the period after 1972, we retained the routes 
with gaps of less than 3 years' duration and then conducted a mul-
tivariate imputation by chained equations (MICE; van Buuren & 
Groothuis- Oudshoorn, 2011), as implemented by the ‘mice’ pack-
age in R, to fill the gaps after diversity calculation. Multivariate im-
putation by chained equation has a better prediction quality and 
produces less biased estimates than other imputation methods 
in risk models using regression (Ambler et al., 2007). We used a 
random forest algorithm (Breiman, 2001) for MICE, as it had high 
performance, required little computational time and was good at 
dealing with high- dimensional data (Pantanowitz & Marwala, 2009; 
Penone et al., 2014). We removed from all routes records for un-
identified species (66 out of 713 species) and analysed a total of 
911,702 records (20,721 per year) from 316 out of 5690 survey 
routes with less than 3 years' data gaps during 1973– 2016. We im-
puted a sum of 331 data gaps (2.4% of the total number of years 
across 316 routes) from 214 routes based on all taxonomic, func-
tional and phylogenetic records for each survey route. To reduce 
the effects of nonrandom spatial sampling, we also implemented 
our approach for the region east of Mississippi River which resulted 
in 200 survey routes as a comparison.

2.2.2  |  Diversity measures

To compare taxonomic, functional and phylogenetic diversity in a 
consistent framework, we calculated these using an abundance- 
weighted measure, Rao's quadratic entropy (Rao, 1982):

where dij is the taxonomic, functional or phylogenetic diversity dissim-
ilarity between each pair of species i and j, whilst pi and pj are their 
relative abundance. We then calculated the three diversity indices for 
a given time- series for every year.

For taxonomic diversity, the distance between all species is the 
same (dij = 1), and Rao's Q, in this case, is equivalent to the Gini– 
Simpson index, which usually measures the probability of interspe-
cific encounter (Hurlbert, 1971). For the calculation of functional 
diversity, we used four categories of 16 traits from Elton Traits 1.0 
(Wilman et al., 2014). These traits, which are assumed to represent 
key Eltonian niche dimensions, comprised: body mass, diet (i.e. the 
proportional use of invertebrates, vertebrates, carrion, fresh fruits, 
nectar and pollen, seeds, and other plant materials in species' diet), 
foraging niche (i.e. prevalence of foraging below water surfaces, on 
water surface, on terrestrial ground level, in understorey, in mid- 
canopy, in upper canopy, and aerial) and broad habitat types (i.e. 
pelagic or not). The traits that we used to calculate functional diver-
sity are correlated with each other to different extents (Figure S2). 
However, considering there are no traits that are fully correlated and 
each trait carries unique features shaping avian functions, we retain 
all traits in the Elton trait database for subsequent analyses. We gave 
equal weights to each trait category, which resulted in weights for 
body mass and broad habitat type of 1, and 1/7 for each diet and 
foraging niche variable. Functional distance was calculated using a 
multivariate trait dissimilarity of Gower's distance (Gower, 1971) for 
each pairwise species (Pavoine et al., 2009), with functional diversity 
calculated as the subtree length on the UPGMA (Unweighted Pair 
Group Method with Arithmetic Mean) dendrograms of these dis-
tances. Phylogenetic distance was calculated using 100 phylogenies 
sampled from a full pseudo- posterior distribution of phylogenetic 
trees (http://birdt ree.org). The mean phylogenetic diversity across 
these 100 dendrograms was calculated. All three diversity facets 
were standardised by SDi =

(
Di −min(D)

)
∕(max(D) −min(D)) be-

fore further analysis, where SDi is the standardised diversity, D is the 
diversity andD =

(
D1, … ,Dn

)
.

2.2.3  |  Relationship between different 
diversity facets

To investigate the correlation of functional- taxonomic, phylogenetic- 
taxonomic and functional- phylogenetic diversity in each group of 
diversity time- series, we adopted generalised additive models (GAM) 
and included the year of a given time- series as a random effect. We 
calculated the deviation explained and 95% CI for all the groups to 
measure the correlation of different pairs of diversity facets.

2.3  |  MODIS/Terra Vegetation Indices

We used the enhanced vegetation index (EVI) from a remote- sensing 
product (MOD13C2) (Didan, 2015) as a test of the framework in dif-
ferent sample coverages for a system where we expect strong spatial 
clustering. The EVI provided biomass information and can be used 
to quantify vegetation greenness. The product provided a monthly 
EVI in a 5600- m resolution from 2000 to 2021 across the globe. As 
we aim to test the spatial dependence of EVI time- series, we here 

Q =
∑

ij

dijpjpj
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18  |    ZHANG et al.

quantified their annual change in September when the activity of 
vegetation is usually at a maximum and relatively constant over the 
year (Villamuelas et al., 2016) across North America to simplify the 
calculation. We applied our framework with EVI time- series that lo-
cate within the same cells as bird survey routes (316 time- series).

3  |  RESULTS

To test the relative fit of geographic structuring, we assessed the 
spatial dependence of time- series within each pattern recognised 
by changes in their variabilities using two data sets with different 
spatial sample coverages. We found no evidence of stronger geo-
graphic structure on diversity change of North American breeding 

birds than random. We found that the average distance between the 
survey routes lay in the middle part of the distance frequency curve 
calculated from randomly distributed points, although the number 
of survey routes within eight of the nine groups varied (Figure 2). 
Similar results were also found for using survey routes within east of 
the Mississippi River region (Figure 3 and Figures S12– S14) and other 
numbers of groups of diversity time- series (Figures S3– S6).

The temporal trends, range and correlation of taxonomic, 
functional and phylogenetic diversity varied across the different 
groups of diversity time- series (Figure 4 and Figures S7– S10). Tax-
onomic diversity showed a gradual increase in four patterns (Fig-
ure 4G1,G4,G7,G9) and decline or no change in the other groups 
(Figure 4G2,G3,G5,G6,G8). Functional and taxonomic diversity were 
positively correlated in most groups (DE = 0.44, 95%CI = 0.30 ∼ 0.59 ; 

F I G U R E  2  Distribution of survey routes in the North American Breeding Birds Survey and spatial independence test. Each panel presents 
the distribution of diversity time- series that have the same pattern as identified by the SOM. The inset density plot shows the distribution 
of the ANN distance of 1000 Monte Carlo tests. Solid lines in the density plot represent the average nearest neighbour (ANN) distance of 
the survey routes, and dashed lines represent the mean value of ANN for 1000 random samples. Blue points represent the start locations 
of survey routes in the focal SOM group and orange points are the start locations of other survey routes that do not follow into the SOM 
group. Percentages on the left top of each panel denote the percentages of time- series in that group to all time- series. Pseudo p- values 
represent the probability of incorrectness if rejecting the geographic independence hypothesis that diversity time- series that have the same 
pattern are randomly distributed.
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    |  19ZHANG et al.

Figure S11). Functional diversity showed similar trends to taxonomic 
diversity, but the change rates were different.

The correlation between taxonomic and phylogenetic diversity 
varied less in groups of diversity time- series (Figure 4). Phylogenetic 
diversity had a trend of slowly increasing or staying flat as taxo-
nomic diversity increased (DE = 0.16, 95%CI = 0.09 ∼ 0.23). The 
correlation between functional and phylogenetic diversity differed 
more in groups of diversity time- series compared with the correla-
tion between taxonomic and functional diversity, or taxonomic and 
phylogenetic diversity (DE = 0.41, 95%CI = 0.32 ∼ 0.52). In most of 
the groups (seven out of nine groups), functional diversity increased 
faster than the increase of phylogenetic diversity and could also 
increase more slowly or even decline with the rise of phylogenetic 
diversity (Figure 4).

We found EVI time- series that were recognised to have the 
same pattern of temporal change had a clear geographic structure 
(Figure 5). We found strong evidence that the distribution of the 
time- series is distinct from random across all groups (Figure 5 and 
Figures S15– S17). Hence, this method is able to detect and return 
strongly spatially clustered signals.

4  |  DISCUSSION

Despite the frequent use of geographic structure in studies of the 
distribution of biodiversity (Blowes et al., 2019; Devictor et al., 2010; 
Gaston, 2000; Willig et al., 2003), we reveal that using geographic 
structure as a default rule to recognise diversity patterns may be 

F I G U R E  3  Distribution and spatial independence test of survey routes for the North American Breeding Birds Survey to the east of 
Mississippi River. Each panel presents the distribution of diversity time- series that have the same pattern as identified by the SOM. The inset 
density plot shows the distribution of the ANN distance of 1000 Monte Carlo tests. Solid lines in the density plot represent the average 
nearest neighbour (ANN) distance of the survey routes, and dashed lines represent the mean value of ANN for 1000 random samples. Blue 
points represent the start locations of each survey route in the focal SOM group and orange points are the start locations of other survey 
routes that do not follow into the SOM group. Percentages in the left top of each panel denote the percentages of time- series in that group 
to all time- series. Pseudo p- values represent the probability of incorrectness if rejecting the geographic independence hypothesis that 
diversity time- series that have the same pattern are randomly distributed.
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biased; there are other kinds of structure in such data that are im-
portant to understand diversity patterns.

We proposed a nongeographic framework to group biodiversity 
time- series based on a pattern recognition method (i.e. SOM) and 
highlight potential geographic biases to understand patterns of di-
versity change. Specifically, we classified the time- series that varied 
similarly in the temporal trend as having the same pattern and tested 
whether the geographic distribution of areas of the same pattern is 
random. Using the North American Breeding Birds data, we demon-
strated that diversity time- series that have the same pattern of tem-
poral change could be independent of their geographic locations. 
This implies that in large- scale studies, geographic proximity may 
not correspond to shared temporal diversity trends. Ignoring the 
possible variation between time- series of a given geographic cluster, 

for example simply taking all time- series as a whole, might bias the 
understanding of biodiversity change.

By identifying geographically disparate patterns of similar diver-
sity change, we emphasise the complex resultant structure of biodi-
versity (Brooks et al., 2006; Gaston, 2000) from two perspectives. 
First, from a spatial perspective, biodiversity is usually understood 
as having multiple facets, including taxonomic and species compo-
sition, ecosystem function and service potential and evolutionary 
history, which leads to the complexity in its distribution and struc-
ture (Gaston, 2000; Grenyer et al., 2006; Petchey & Gaston, 2006; 
Tilman, 1982). Communities in neighbouring regions may face differ-
ent environmental and human pressures, and as a result, have diver-
gent trends in diversity change (Catford et al., 2022). Therefore, the 
estimation of large- scale diversity patterns may be biased by using 

F I G U R E  4  Temporal changes of taxonomic, functional and phylogenetic diversity in the North American Breeding Birds Survey. Each 
panel denotes the change of diversity time- series that have the same pattern. The error bars represent a 95% confidence interval. The non- 
linear regressions (a loess sliding window with a 33% range width; smoothed line) of the diversity facets were added to describe the major 
temporal trajectory of each group.
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geographic structure a priori and not distinguishing the behaviours 
between diversity time- series. Second, in temporal contexts, biodi-
versity change is also influenced in complex ways such as the ex-
ploitation of biological resources, the introduction of exotic species, 
climate and land- use change (Mantyka- Pringle et al., 2012; Newbold 
et al., 2015; Sax & Gaines, 2003). This means despite studies based 
on static diversity data having found strong geographic structures 
in their distributions (Bahn & McGill, 2007, 2013), approaches that 
incorporate the dynamic changes of diversity might still reach juxta-
posing conclusions. In addition, the complex change in environments 
in turn may influence the behaviours of surveyors and estimation of 
diversity trends (Bowler et al., 2022; Zhang et al., 2021). This is par-
ticularly important for recognising patterns of diversity changes con-
sidering that the spatial sample coverage of even the most extensive 

biodiversity data sets is believed to be less than 7% of the Earth's 
surface at a 5- km resolution (Hughes, Orr, Ma, et al., 2021), and 
analyses estimating long- term diversity trends may abandon short 
time- series or time- series with data gaps (Zhang et al., 2021). Using 
geographic structure, a priori to seek patterns of dynamic diversity 
change can result in failures to incorporate diversity changes that 
were not recorded and bias the diversity estimation. Given the dif-
ficulties to improve the spatial coverage of long- term biodiversity 
surveys, the nongeographic framework that organises diversity time- 
series independently of their relative or specific locations also adds 
a novel way to conduct macroecological studies in recognising large- 
scale diversity patterns for existing diversity time- series data sets.

As for the patterns of North American Breeding bird diver-
sity, we found functional and phylogenetic diversity changed 

F I G U R E  5  Distribution and spatial independence test of enhanced vegetation index (EVI) time- series from the same locations as bird 
survey routes. Each panel presents the distribution of EVI time- series (blue pixels) that have the same pattern. The inset density plot shows 
the distribution of the ANN distance of 1000 Monte Carlo tests. Solid lines in the density plot represent the average nearest neighbour 
(ANN) distance of the locations of EVI time- series, and dashed lines represent the mean value of ANN for 1000 random samples. Blue points 
represent the start locations of each survey route in the focal SOM group and orange points are the start locations of other survey routes 
that do not follow into the SOM group. Percentages in the left top of each panel denote the percentages of time- series in that group to all 
time- series. Pseudo p- values represent the probability of incorrectness if rejecting the geographic independence hypothesis that EVI time- 
series that have the same pattern are randomly distributed.
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disproportionately to taxonomic diversity in multiple groups. Specif-
ically, significant changes in functional diversity were accompanied by 
more minor changes in taxonomic diversity. Similarly, previous studies 
also found unsynchronised changes between taxonomic and func-
tional diversity (Le Bagousse- Pinguet et al., 2019; Monnet et al., 2014). 
The correlation between taxonomic and functional diversity was 
strong and positive in the long term, which was a likely consequence 
of the replacement of functionally redundant species with unique 
ones (Bełcik et al., 2020). Furthermore, changes in phylogenetic diver-
sity in the groups were smaller than or even opposite to what would 
have been expected given the concomitant changes in taxonomic and 
functional diversity. Correspondingly, phylogenetic diversity showed 
a tendency to level off and even decline with increasing taxonomic 
and functional diversity. This phylogenetic homogenisation implies 
that the bird assemblages have perhaps undergone recruitment of, or 
even replacement by, closer relatives of species already present. The 
fast adaptive radiation of colonising species could also contribute to 
the high levels of taxonomic and functional diversity and low levels of 
phylogenetic diversity across North America (Jarzyna & Jetz, 2017).

We also tested our framework with an EVI time- series data set. 
The results showed strong evidence that EVI time- series of the same 
pattern are geographically structured using the same locations as 
bird survey routes. This suggests that geographic structure may 
work well in understanding ecological changes in plant biomass (Holt 
et al., 2013; Smith et al., 2018) but may not play a meaningful role in 
delimiting more complex patterns of animal diversity change. There-
fore, the results emphasise the geographic biases in recognising pat-
terns of diversity change and the importance of our framework to 
partition biodiversity change by the similarity of time- series.

Since we focus on the geographic bias in long- term diversity esti-
mations with existing diversity time- series data, there are caveats in 
interpreting our results. First, temporal or spatial scale- dependences 
may influence this geographic bias. Future work could explore inter-
plays between different spatial sample coverages and lengths of di-
versity time- series and how they may influence the geographic bias. 
Second, our work concentrated on temperate areas whilst diversity 
dynamics in other biomes can be different given possibly less distur-
bance in those regions. It is beneficial to explore the extent to which 
the nongeographic structure is influenced by biomes. Third, in the main 
analysis, we used North America Breeding Survey data that followed a 
standard protocol in collecting data. However, studies that might use 
our framework with other data sets (e.g. citizen data) should be aware 
of sampling variation, and rarefaction and resampling techniques can 
be useful for these data sets (Chao et al., 2020; Gotelli & Colwell, 2001).

Future work could also concentrate on identifying drivers of the 
nongeographic biodiversity patterns extracted from time- series, 
which can be achieved by determining (non)geographic patterns in 
the temporal variation of biotic and/or abiotic factors and exploring 
their potential mismatch with recognised diversity patterns. Then, 
by analysing the degree of mismatch between diversity and factor 
patterns, it could be possible to establish networks of ecological in-
teractions and their contributions to the dynamic of diversity change 
in each pattern. In doing so, recognising nongeographic patterns also 

provides a bridge between empirical systems and theoretical inter-
action frameworks, such as has been used in identifying the rela-
tionship between patterns of phytoplankton and eddy lifecycles in 
oceanography (Huang et al., 2017).
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